X-linked adrenoleukodystrophy, simply called ALD, is rare X-linked neuro-metabolic disorder [1]. The first X-linked adrenoleukodystrophy case – a 6-year-old male X-ALD patient was detected by Mosser in 1993 1*. Mutations in the ABCD1 (ATP-binding cassette transporter subfamily D member 1), ALDP, peroxisomal half-transporter gene, which is included in the ABC transporter superfamily give rise to ALD, so it is also known as single gene disorder [2,3].
The mutation leads to the accumulation of high levels of very-long-chain fatty acids ≥ C22:0 (VLCFAs) in plasma, and especially accumulation in the white matter of the brain, spinal cord, and adrenal cortex [2-4]. Both men and women are affected by ALD. Progressive spinal cord disease and adrenmyeloneuropathy that is characterised by weakness, bladder, and bowel dysfunction, impaired movement are mostly encountered in men and most women with ALD [5]. Primary adrenal insufficiency and cerebral inflammatory disease occur in men. On the other hand, the frequency of the emergence of primary adrenal insufficiency and cerebral disease is less than 1% in women [6-9].
Accumulation of lipids containing VLCFA happens in all kinds of tissues. Especially, the brain, spinal cord, adrenal cortex, and the Leydig cells of the testis, which are necessary for the development of secondary sexual characteristics, have the highest level of VLCFA accumulation 2*. Esterification of VLCFA takes place with cholesterol and glycerophospholipids [11]. Esterification of VCLFA to cholesterol occurs in the adrenal cortex, testis, and demyelinating brain whose myelin sheath is damaged so that the work of neurons is affected [4]. Because lipoprotein-bound cholesterol is not able to cross the blood-brain barrier, the greater portion of the cholesterol synthesis occurs in the brain with high storage in myelin as a form of free cholesterol, and the rest of it is stored in neurons and glial cells [12]. Extra cholesterol in cells including neurons is deposited in ester form [10].
Cytoplasmic cholesterol esters in lipid droplets comprise 1% of brain cholesterol in a healthy person. Surplus of the cholesterol in the brain can be transported from the brain by converting it to different forms of cholesterol such as 27-hydroxy cholesterol or 24-hydroxy cholesterol [10]. 27-hydroxy cholesterol and 24-hydroxy cholesterol can cross the blood-brain barrier. Blood-brain barrier impairment results from raised permeability of it to sterols [14]. Cholesterol plays an essential role in the synthesis of steroid hormones regulation of oxysterols, and it is an element of several cellular membranes. Thus, the impairment of transportation of cholesterol has a negative impact on cholesterol homeostasis [15].
A small amount of VLCFA is of dietary origin. Most of it is produced by chain elongation that is happened by ‘’VLCFA-specific elongase’’ ELOVL1 (ELOVL fatty acid elongase[1]. Normally, ABCD1 protein participates in the transportation of saturated straight-chain VLCFA in form of CoA esters to the peroxisome where their degradation is carried out via β-oxidation [10]. Degradation of excess VLCFA in macrophages and microglia cannot occur due to deficiency of ABCD1 [10]. Gene expression of Acyl-CoA cholesterol acyltransferase 1 (ACAT1), which catalyses the generation of cholesteryl esters from long-chain fatty Acetyl-CoA and cholesterol, rises when ER has surplus cholesterol [10,22]. Enhanced ACAT1 activity occurs as a result of neurotoxic agents, oxidative stress, or inflammation and results in increased cholesterol esters with VLCFA [4]. Generally, cholesterol ester hydrolases provide to remain the cholesterol esters concentration low in the brain, but the enzyme does not show greater activity on cholesterol esters with VLCFA [13]. So, an excess amount of saturated straight-chain VLCFA exists in blood samples of patients with ALD.

defective ABCD1.
Patients with ALD have normal brain function when they were born [10]. However, the sudden development of the demyelinating disease is encountered in nearly 60% of male patients with ALD. About half of the cases are detected in 3-10 years old, 5% of it occurs in adolescence or adulthood [10]. Especially, males with ALD, in their 20s or 30s, show progressive myeloneuropathy. nearly 60% of females with ALD in their 60s exhibit development symptoms of spinal cord disease. Loss of sensation in the legs, spastic gait, and bladder and bowel incontinence are the early symptoms of progressive spinal cord disease [10] Unlikely, some females with ALD may develop symptoms of the disease by the age of 20 [8]. Dysesthesia which means the painful, abnormal sensation such as burning or itchy-prickly*3 is typically encountered in females with ALD [16].

Allogeneic hematopoietic stem cell transplantation (HSCT) is applied to treat ALD. Early diagnosis by newborn screening increases the chance of success of therapy. Newborn screening for ALD provides monitoring and timely therapeutic intervention, thus preventing life-threatening damages [21]. It is better to administer therapy before symptoms of ALD appear. As mentioned before, most of the men suffer from adrenal insufficiency and the men succumb to adrenal crisis. Therefore, in particular for men, early diagnosis of adrenal disease decreases the death ratio [6]. Measurement of the level of VCLFA (for elevated VLCFA levels or abnormal ratios of VLCFA) in the blood is also diagnostic [17]. Besides, the verification of diagnosis of ALD can be done by genetic testing [3]. Amniocentesis might be also applied for prenatal genetic diagnosis of ALD for at-risk fetuses. This process may lead to miscarry [18,19]. In some studies, not-FDA-approved Lorenzo’s oil therapy was applied. The results of the research reveal the fact that Lorenzo’s oil hinders ELOVLI [20]. Overall, different therapies have been developed and tried to treat individuals with X-linked adrenoleukodystrophy. The most important point of the treatment of ALD is to diagnose it before symptoms occur as in most such cases. Awareness of the disease can save the lives of people.
- 1* Mosser J, Douar AM, Sarde CO, et al. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature, 1993.
- 2* Edmondson, E. A. (2017). Pain Processing and Modulation. Neurology Secrets, 375– 388.e1. doi:10.1016/b978-0-323-35948-1.00027-9
- 3* Mammalian Sex Determination and Gonad Development Dagmar Wilhelm, Jennifer X. Yang, Paul Thomas,Department of Anatomy and Developmental Biology, 2013
References:
- Zhu J, Eichler F, Biffi A, Duncan CN, Williams DA, Majzoub JA. The Changing Face of Adrenoleukodystrophy. Endocr Rev. Published online 2020. doi:10.1210/endrev/bnaa013
- Moser HW, Moser AB, Frayer KK, et al. Adrenoleukodystrophy: Increased plasma content of saturated very long chain fatty acids. Neurology. Published online 1981. doi:10.1212/wnl.31.10.1241
- Mosser J, Douar AM, Sarde CO, et al. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature. Published online 1993. doi:10.1038/361726a0
- Igarashi M, Schaumburg HH, Powers J, Kishimoto Y, Koilodny E, Suzuki K. FATTY ACID ABNORMALITY IN ADRENOLEUKODYSTROPHY. J Neurochem. Published online 1976. doi:10.1111/j.1471-4159.1976.tb04462.x
- Montoro R, Heine VM, Kemp S, Engelen M. Evolution of adrenoleukodystrophy model systems. J Inherit Metab Dis. Published online 2020. doi:10.1002/jimd.12357
- Dubey P, Raymond G V., Moser AB, Kharkar S, Bezman L, Moser HW. Adrenal insufficiency in asymptomatic adrenoleukodystrophy patients identified by very long chain fatty acid screening. J Pediatr. Published online 2005. doi:10.1016/j.jpeds.2004.10.067
- Engelen M, Kemp S, De Visser M, et al. X-linked adrenoleukodystrophy (X-ALD): Clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis. Published online 2012. doi:10.1186/1750-1172-7-51
- Engelen M, Barbier M, Dijkstra IME, et al. X-linked adrenoleukodystrophy in women:
A cross-sectional cohort study. Brain. Published online 2014. doi:10.1093/brain/awt361 - Habekost CT, Schestatsky P, Torres VF, et al. Neurological impairment among heterozygote women for X-linked Adrenoleukodystrophy: A case control study on a clinical, neurophysiological and biochemical characteristics. Orphanet J Rare Dis. Published online 2014. doi:10.1186/1750-1172-9-6
- Turk BR, Theda C, Fatemi A, Moser AB. X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci. Published online 2020. doi:10.1002/jdn.10003
- Johnson AB, Schaumburg HH, Powers JM. Histochemical characteristics of the striated inclusions of adrenoleukodystrophy. J Histochem Cytochem. Published online 1976. doi:10.1177/24.6.59773
- Dietschy JM. Central nervous system: Cholesterol turnover, brain development and neurodegeneration. Biol Chem. Published online 2009. doi:10.1515/BC.2009.035
- Ogino T, Suzuki K. Specificities of Human and Rat Brain Enzymes of Cholesterol Ester Metabolism Toward Very Long Chain Fatty Acids: Implication for Biochemical Pathogenesis of Adrenoleukodystrophy. J Neurochem. Published online 1981. doi:10.1111/j.1471-4159.1981.tb01657.x
- Saeed AA, Genové G, Li T, et al. Effects of a disrupted blood-brain barrier on cholesterol homeostasis in the brain. J Biol Chem. Published online 2014. doi:10.1074/jbc.M114.556159
- Diotel N, Charlier TD, Lefebvre d’Hellencourt C, et al. Steroid transport, local synthesis, and signaling within the brain: Roles in neurogenesis, neuroprotection, and sexual behaviors. Front Neurosci. Published online 2018. doi:10.3389/fnins.2018.00084
- Van Geel BM, Koelman JHTM, Barth PG, Ongerboer De Visser BW. Peripheral nerve
abnormalities in adrenomyeloneuropathy: A clinical and electrodiagnostic study. Neurology. Published online 1996. doi:10.1212/WNL.46.1.112 - Moser AB, Kreiter N, Bezman L, et al. Plasma very long chain fatty acids in 3,000
peroxisome disease patients and 29,000 controls. Annals of Neurology. 1999;45(1):100-10. 34. - Maier EM, Roscher AA, Kammerer S, et al. Prenatal diagnosis of X-linked
adrenoleukodystrophy combining biochemical, immunocytochemical and DNA analyses. Prenat Diagn. 1999;19(4):364-8. 46. - Lan F, Wang Z, Ke L, et al. A rapid and sensitive protocol for prenatal molecular diagnosis of X-linked adrenoleukodystrophy, 2010;411(23-24):1992-7
- Sassa, T., Wakashima, T., Ohno, Y., & Kihara, A., Lorenzo’s oil inhibits ELOVL1 and lowers the level of sphingomyelin with a saturated very long-chain fatty acid. Journal of Lipid Research, 55, 524–530. https://doi.org/10.1194/jlr.M044586, 2014
- Rinse W. Barendsen, Inge M. E. Dijkstra et al. Adrenoleukodystrophy Newborn Screening in the Netherlands (SCAN Study): The X-Factor
- Bo-Liang L., Xia-Lu L., et al. Human Acyl-CoA:Cholesterol Acyltransferase-1 (ACAT1) Gene Organization and Evidence That the 4.3-Kilobase ACAT-1 mRNA Is Produce from Two Different Chromosomes, 1999
Figure References:
- VLCFA are synthesised through elongation of long-chain fatty acids…. | Download Scientific Diagram (researchgate.net
- The Changing Face of Adrenoleukodystrophy Jia Z., Florian E., et al., 2020
Inspector: İrem ÖĞÜTÜCÜ